Exercise 84

(a) Find an equation of the tangent to the curve $y=e^{x}$ that is parallel to the line $x-4 y=1$.
(b) Find an equation of the tangent to the curve $y=e^{x}$ that passes through the origin.

Solution

Part (a)

Solve the equation of the line for y.

$$
x-4 y=1 \quad \rightarrow \quad-4 y=-x+1 \quad \rightarrow \quad y=\frac{1}{4} x-\frac{1}{4}
$$

It has a slope of $1 / 4$. Now take the derivative of the curve and set $y^{\prime}=1 / 4$.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(e^{x}\right) \\
\frac{1}{4} & =e^{x}
\end{aligned}
$$

Solve for x.

$$
\begin{aligned}
& \ln \frac{1}{4}=\ln e^{x} \\
& \ln \frac{1}{4}=x
\end{aligned}
$$

Now plug this value of x into the equation of the curve to determine the corresponding y-value.

$$
y=e^{\ln (1 / 4)}=\frac{1}{4}
$$

Consequently, the point that the tangent line touches the curve at is

$$
\left(\ln \frac{1}{4}, \frac{1}{4}\right)
$$

Use the point-slope formula to obtain the equation of the tangent line with slope $1 / 4$.

$$
\begin{aligned}
& y-\frac{1}{4}=\frac{1}{4}\left(x-\ln \frac{1}{4}\right) \\
& y-\frac{1}{4}=\frac{1}{4} x-\frac{1}{4} \ln \frac{1}{4} \\
& y=\frac{1}{4} x-\frac{1}{4} \ln \frac{1}{4}+\frac{1}{4} \\
& y=\frac{1}{4}\left(x-\ln \frac{1}{4}+1\right) \\
& y=\frac{1}{4}(x+\ln 4+1)
\end{aligned}
$$

The graph below illustrates the curve and its tangent line with slope $1 / 4$.

Part (b)
Differentiate the equation of the curve.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(e^{x}\right) \\
& =e^{x}
\end{aligned}
$$

Set $x=0$ to determine the slope of the tangent line.

$$
y^{\prime}(0)=e^{0}=1
$$

The slope is 1 . Find the y-coordinate corresponding to $x=0$.

$$
y=e^{0}=1
$$

Consequently, the point that the tangent line touches the curve at is

$$
(0,1) \text {. }
$$

Use the point-slope formula to obtain the equation of the tangent line.

$$
\begin{gathered}
y-1=1(x-0) \\
y-1=x \\
y=x+1
\end{gathered}
$$

The graph below illustrates the curve and its tangent line at $x=0$.

